The effect of surface water and wetting on gecko adhesion.
نویسندگان
چکیده
Despite profound interest in the mechanics and performance of the gecko adhesive system, relatively few studies have focused on performance under conditions that are ecologically relevant to the natural habitats of geckos. Because geckos are likely to encounter surfaces that are wet, we used shear force adhesion measurements to examine the effect of surface water and toe pad wetting on the whole-animal performance of a tropical-dwelling gecko (Gekko gecko). To test the effect of surface wetting, we measured the shear adhesive force of geckos on three substrate conditions: dry glass, glass misted with water droplets and glass fully submerged in water. We also investigated the effect of wetting on the adhesive toe pad by soaking the toe pads prior to testing. Finally, we tested for repeatability of the adhesive system in each wetting condition by measuring shear adhesion after each step a gecko made under treatment conditions. Wetted toe pads had significantly lower shear adhesive force in all treatments (0.86 ± 0.09 N) than the control (17.96 ± 3.42 N), as did full immersion in water (0.44 ± 0.03 N). Treatments with droplets of water distributed across the surface were more variable and did not differ from treatments where the surface was dry (4.72 ± 1.59 N misted glass; 9.76 ± 2.81 N dry glass), except after the gecko took multiple steps. These findings suggest that surface water and the wetting of a gecko's adhesive toe pads may have significant consequences for the ecology and behavior of geckos living in tropical environments.
منابع مشابه
The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry a...
متن کاملSurface wettability plays a significant role in gecko adhesion underwater.
Although we now have thousands of studies focused on the nano-, micro-, and whole-animal mechanics of gecko adhesion on clean, dry substrates, we know relatively little about the effects of water on gecko adhesion. For many gecko species, however, rainfall frequently wets the natural surfaces they navigate. In an effort to begin closing this gap, we tested the adhesion of geckos on submerged su...
متن کاملRobust adhesion of flower-like few-layer graphene nanoclusters
Nanostructured surface possessing ultrahigh adhesion like "gecko foot" or "rose petal" can offer more opportunities for bionic application. We grow flower-like few-layer graphene on silicon nanocone arrays to form graphene nanoclusters, showing robust adhesion. Their contact angle (CA) is 164° with a hysteresis CA of 155° and adhesive force for a 5 μL water droplet is about 254 μN that is far l...
متن کاملSelf-Drying: A Gecko's Innate Ability to Remove Water from Wet Toe Pads
When the adhesive toe pads of geckos become wet, they become ineffective in enabling geckos to stick to substrates. This result is puzzling given that many species of gecko are endemic to tropical environments where water covered surfaces are ubiquitous. We hypothesized that geckos can recover adhesive capabilities following exposure of their toe pads to water by walking on a dry surface, simil...
متن کاملGecko Adhesion on Wet and Dry Patterned Substrates
Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 17 شماره
صفحات -
تاریخ انتشار 2012